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Large-Deviations Estimates in Burgers Turbulence
with Stable Noise Initial Data

Jean Bertoin1
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We consider the inviscid Burgers equation where the in i t i a l datum is given by
a stable (Levy) noise. The asymptotic behavior of the tail distribution of the
solution is described; the decay is much taster in the case when the stable noise
is completely skewed to the left.

1. INTRODUCTION

The purpose of this paper is to solve a problem of large deviations involving
Burgers turbulence for a certain class of random initial data. It has been
motivated by the work of Avellaneda and E ( 1 , 2 ) who have obtained bonds
for the tail distributions of the (Hopf-Cole) solution in the case when the
initial velocity is given by a Gaussian white noise. We refer to Burgers,(4)

Chorin,(5) and Woyczynski(19) and the references therein for physical moti-
vations for such studies (and much more).

Before presenting our setting, let us recall some basic features in one-
dimensional Burgers turbulence. Burgers equation with viscosity parameter
e>0
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has been solved explicitly by Hopf ( 1 1 ) and Cole(6) in terms of the initial
condition u(x, t = 0). Loosely speaking, the solution Ue to (1) converges as
the viscosity parameter e goes to 0 to some function u0 = u, which is known
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as the Hopf-Cole solution to the inviscid Burgers equation. There are at
least two useful expressions for this solution in terms of the initial datum
u( ., 0). First, if we introduce a potential function y by u = — d x y , then for
t>0

The function a(x, t) is called the inverse Lagrangian function and its
inverse (when the time t is fixed and the location x varies) the Lagrangian
function. The Lagrangian function x(a, t) gives the location at time / of the
fluid particle started initially at a when the inviscid Burgers equation is
used as a simplified model for hydrodynamic turbulence; see ref. 18. In this
framework, u(x, t) represents the velocity of the fluid particle located at x
at time t.

Burgers (4) has considered the situation when the initial datum is a
white noise process, i.e., when the initial potential y ( . ,0 ) is given by a
(two-sided) Brownian motion. We refer again to Woyczynski(19) and the
references therein for literature on the subject. The starting point of this
work is an estimate of the tail distribution of the velocity obtained by
Avellaneda and E (cf. Theorem 3 in ref. 1 and Theorem 1 in ref. 2):
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which yields u ( x , t ) by taking the x-derivative. Of course, (2) makes sense
whenever the initial potential is such that y (a , 0) = o(a2) as |a| -> oo, a con-
dition that we implicitly take for granted. Second, if we denote by a(x, t)
the largest location a for which the supremum in (2) is achieved, then the
solution u is given by

It can be easily seen that (u(x, t): xe R) is a stationary process (cf.
Section 2 in ref. 1), so the probability above does not depend on x. These
bounds can be sharpened; we will show using a classical argument of large
deviations that

More precisely, (4) has been obtained first by Reade Ryan who has an even
sharper estimate, see Theorem 1.1 in ref. 16.



for some nonnegative constants c+ and c_; see for instance Sections I.I
and VIII . 1 in ref. 3.

The motivation for considering such type of initial condition stems
from the key role of stable Levy processes in a wide family of renormalized
potentials. The best known example is that field is of course connected
to sums of i.i.d. variables and domains of attraction; cf. Gnedenko and
Kolmogorov.(10) For instance, suppose that the initial potential is given by
y ( y , 0) — y ( x , 0) = Ex<j<y Ej where (Ej: jeZ) is a family of i.i.d. variables
in the normal domain of attraction of a stable law of index a. This means
that for each fixed xe R, n - 1 / a y ( x n , 0) converges in law as n -> oc to some
a-stable law. In this situation, a stronger result holds, namely the process
( n - 1 / a y(xn, 0), xe R) converges weakly for Skorohod's topology towards
a s table  Levy process ,  say (y(x,0) ,xeR);  see for  instance Jacod and
Shiryaev.(13) It is then easily seen that
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The main purpose of this paper is to investigate the analogue of (4)
when the initial velocity is a stable noise, i.e., when the initial potential is
a (two-sided) stable Levy process. In other words, ( y ( x , 0), xe R) has inde-
pendent and stationary increments, and fulfils the scaling property

for some ae( l /2 , 2] known as the index. The restriction a> 1/2 is due to
the requirement that y (a , 0) = o(a2) as |a| -> oo. The celebrated Levy-Ito
decomposition of non-Gaussian stable Levy processes also enables us to
describe the initial condition directly in terms of u ( . , 0 ) . Typically, for
a<2, the initial velocity is a mixture of Dirac point masses, i.e., u ( x , 0 ) =
W(X)EX where EX denotes the Dirac point mass at x and the weight ( w ( x ) ,
xeR) a certain Poisson point process. More precisely, the points (x, w(x))
form a Poisson cloud in R2 with intensity

converges in distribution as n -> oo towards

which is the potential at time t of the Hopf-Cole solution to the inviscid
Burgers equation with initial potential y ( . , 0 ) . Similar limit results can



be obtained in the more general situation when the initial potential is
expressed as the partial sum of some stationary sequence of variables in the
domain of attraction of a stable law; see Ibragimov and Linnik(12) and also
Davis and Resnick(7) in the particular case of moving averages. We also
mention that there is a great variety of limit theorems in Burgers turbu-
lence; see e.g., refs. 9, 15, and 19 for important results which do not involve
stable noise. Finally, we refer to a recent work of Janicki and Woyczynski(l4)

where the inviscid Burgers equation with a stable Levy initial velocity is
considered, and to the book by Samorodnitsky and Taqqu(17) for a treatise
on stable processes.

Our results depend crucially on the skew of the stable noise.

Theorem 1. Suppose that the initial potential y ( . , 0 ) is a stable
Levy process with index a e ( l , 2], which is completely skewed to the left
(i.e., there are no positive jumps). Its Laplace transform has the form
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for some c > 0. Then for every t > 0 and x e R, we have

The restriction a > 1 on the index is due to the fact that in the case com-
pletely skewed to the left, the initial potential decreases when a < 1, which
implies that the velocity u(x, t) is necessarily negative (and for a = l,
completely skewed processes do not fulfil the scaling property). It is also
interesting to observe that the decay is faster when a is smaller.

The asymptotic behaviour of the tail distribution of the velocity is
much different when the stable noise is not completely skewed to the left.

Theorem 2. Suppose that the initial potential y( . ,0) is a stable
Levy process of index a e (1/2, 2), which is not completely skewed to the
left (i.e., there exist positive jumps). The characteristic function has the
form

for some c>0 and B e ( - l , l ] (for a=l we agree that b tan(Na/2) = 0).
Then for every t > 0 and x e R, we have



and K = c/n for a = 1.
We thus see that the decay is now faster when a is larger, and in any

case, much slower than when the noise is completely skewed to the left. It
is interesting to point out that the mean of the positive part of the velocity
is then infinite; in particular this impedes the application of the ergodic
theorem to the potential y (x , t) = — jx0 u(y, t) dy.

Finally, we mention that the arguments of Avellaneda and E also
apply in the present setting and enables us to deduce from Theorems 1 and
2 upper bounds for the tail distributions of the so-called rarefaction inter-
vals and shock-strength; see Section 5 in ref. 1. Alternatively, estimates for
the Lagrangian function follow easily since

(cf. Eq. (21) in ref. 18), so we only consider the case t= 1.
Of course, Theorem 1 is an extension of (4); the latter corresponds to

the special case a = 2 and c= 1/2, and follows from Theorem 1.1 in ref. 16.
Nonetheless, it may be worthwhile to present its direct proof as it uses
standard large deviations arguments that cannot be applied entirely in the
general stable case, but provide valuable guidelines.

Proof of (4). We write Ba = y ( a , 0 ) for the initial potential, so
( B a , a > 0 ) and ( B _ a , a > 0 ) are two independent standard Brownian
motions.

We start with the upper bound. According to (3), the event
{ u ( 0 ,  1 ) >  y }  m e a n s  t h a t  t h e  l a r g e s t  l o c a t i o n  o f  t h e  m a x i m u m  o f  B a  —  1 / 2 a 2
is greater than y. So introduce the stopping time
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where

2. PROOFS

It is easily seen that u ( . , t ) is a stationary process, so we may take
x = 0. On the other hand, it follows from the scaling property that for every
t>0
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The process

is a positive martingale. By an integration by parts, it can also be written
as

On the event {«(0, 1 ) > y } = { Ty< co}, we put A = BT - 1T 2
y . In particular

B a -1a 2 ^A for all a ̂  Ty and hence j ̂  Bs ds ̂ ATy + ̂ T3
y. An applica-

tion of the optional sampling theorem yields

which proves the upper bound.
To establish the lower bound, we will use Girsanov's Theorem and to

that end, we introduce the probability measure Q given by

where ^a denotes the natural filtration of B. We consider the events

which are clearly independent. Note that on Ayr\A'y, we have both
supa>0(Ba — \a2}^1 and the location of this supremum is greater than y.
Let p> 0 denote the probability that supa<0(Ba — ̂ a2) ̂  1. We thus have

On the one hand, it is plain that —log P(A'y) x y2 as y -> co. On the other
hand,
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Note that on Ay,

so the preceding probability is bounded from below by exp{ — 1/6 y3 — 2y} x
Q(Ay). But we know from Girsanov's Theorem that Ba — 1/2a2 is a Q-Brow-
nian motion, and thus — log Q(Ay) ~ y. Putting the pieces together com-
pletes the proof of the lower bound. |

We next turn our attention to the stable case. It will be convenient to
write Xa = y(a , 0) for the initial potential, i.e., (Xa, a>0) and( — X_a, a>0)
are two independent identically distributed stable Levy processes. We
first consider the case when the stable noise is completely skewed to the
left.

Proof of the Upper Bound in Theorem 1. The proof is very similar
to that in the Gaussian case a = 2. Specifically, let y and p be two positive
real numbers that will be chosen later on. We first consider the exponential
martingale

By an integration by parts (cf. for instance Theorem VIII. 19 on p. 343 in
ref. 8), we can rewrite this as

We then introduce the stopping time

and put A=XTy-1/2T2y on the event {u(0, 1) > y} = { Ty < oo}. The
inequality Xa < A + 1/2a2 for 0 < a < Ty entails
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Just as in the proof of (4), we then deduce from an application of the
optional sampling theorem that

We first tune up p by considering the exponents of Ty. We see that the
optimal inequality is obtained when p + 2 = ap + 1, that is p = l/(a — 1). As
Ty > y, this yields

We then tune up y, the best inequality is obtained when y = (ca) -1/(a-1).
So y-cya = c - 1 / ( a - 1 )(a-l)a -a/(a-1), which proves the upper bound in
Theorem 1. |

Proof of the Lower Bound in Theorem 1. In the stable case, we can
no longer rely on Girsanov's Theorem as in the Brownian case. However
the idea is similar, in the sense that we shall focus on the set of paths of
the stable process whose supremum at time a is close to 1/2a2 for 0<a< y,
and evaluate the probability of this event by bare hands methods.

More precisely, introduce the first passage process

It is known that T = (Ta ,a>0) is a stable subordinator (i.e., increasing
Levy process) with index 1/a; more precisely

See e.g., Theorem VII.1 in ref. 3. Recall also that the distribution of TI is
absolutely continuous with a continuous density p(x) which has

for small enough x>0. See Eq. (2.5.18) in Zolotarev.(20)

We then consider the sequence of independent events

An application of (5) shows that for large enough n
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After some elementary calculations, one deduces that for every fixed e > 0,
we have

provided that n being a large enough even integer.
The inequality

entails that on Alr\ ... n/f(1/2)n2, we have

The lower bound means that Xa ^k for 0 ̂ a ^ v/2(k + 2) — 2 and k = 1,...,
|n2. In particular, observing that for ^/2(k + 1) -2 ^a< ^/2(k + 2)-2
one has k < ^(a + 2)2, this yields

and a fortiori

On the other hand, recall from (7) that r(1/2)n2^n on /1 ,n ... n
/i(1/2)n2, so that

By the scaling property, the ultimate quantity equals the probability that r, ^
(3n + |)~a; and it follows from (5) that this is larger that exp{ -kna/(a-1)}
for some k > 0.

Plainly, the event {supa<0(Xa- \a2} <2n — 2} is independent of
( X a , a ^ 0 ) and its probability tends to 1 as n-» co. We conclude from (6)
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that for n large enough, the logarithm of the probability that Xa — 1/2a2 <
2n — 2 for — oo <a<n — 2 and Xa — 1/2a2>2n for some a <n + 1 is at least

(Recall that a > 1, so a/(a — 1) < (2a — 1 )/(a - 1).) On the aforementioned
event, we have clearly u(0, 1) > n — 2, so

We next consider the case non completely skewed to the left. We shall
only consider the case a = 1 as the Cauchy case a = 1 only requires obvious
notational changes.

Proof of the Upper Bound in Theorem 2. We first observe that

where the ultimate identity follows from the scaling property. Now the
process ( a - 2 X a , a > 1 ) is a stable (non-Levy) process which can be
expressed in the form

where M is an a-stable random measure on [1, oo) with control measure
m(dx) = c ( e 1 ( d x ) + dx) and constant skewness intensity B, and f ( a , x) =
a -2 1{1<x<a}. See Section 3.3 in ref. 17. An application of Theorem 10.5.1
in ref. 17 yields

which entails the desired upper bound. |

As e > 0 is arbitrary, this establishes the lower bound in Theorem 1.
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Proof of the Lower Bound in Theorem 2. Fix s > 0 and consider for
each integer n > 1 the events

Note that A'n and A"n are independent for each fixed n, and that A1",..., A"n,...
are also independent. We then introduce

Pick an arbitrarily large integer n0 and observe that for each n > n 0 , on the
event An, the location of the supremum for a >0 of Xa — 1/2a2 is larger than
n > n 0 , and the value of this supremum is at least En2>en2

0 . Plainly the
event {sup a < o (X a —1/2a 2 )<en 2

o } is independent of the An's and has a prob-
abilitv which goes to 1 as nn -> oo. We deduce that

In order to estimate the quantity in the right-end side, we use the
classical inequality

which follows from an application of Cauchy-Schwarz inequality to
E1An = 1A(E1An ) with A = U An. On the one hand, it is plain from the
scaling property that P(A'n) tends to 1 as n -> oo, and it is known that

see e.g., again Theorem 10.5.1 in ref. 17. It follows that as n0-> oo,

On the other hand, we have
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We then use again (8) to deduce that

We now see by putting the pieces together that

which in turn yields the desired lower bound as e > 0 is arbitrary.
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